Min-Power Covering Problems
نویسندگان
چکیده
In the classical vertex cover problem, we are given a graph G = (V,E) and we aim to find a minimum cardinality cover of the edges, i.e. a subset of the vertices C ⊆ V such that for every edge e ∈ E, at least one of its extremities belongs to C. In the Min-Power-Cover version of the vertex cover problem, we consider an edge-weighted graph and we aim to find a cover of the edges and a valuation (power) of the vertices of the cover minimizing the total power of the vertices. We say that an edge e is covered if at least one of its extremities has a valuation (power) greater than or equal than the weight of e. In this paper, we consider Min-Power-Cover variants of various classical problems, including vertex cover, min cut, spanning tree and path problems.
منابع مشابه
Exploiting dominance conditions for computing worst-case time upper bounds in bounded combinatorial optimization problems: application to MIN SET COVERING and MAX CUT1
In the design of branch and bound methods for NP-hard combinatorial optimization problems, dominance conditions have always been applied. In this work we show how the use of dominance conditions within search tree algorithms can lead to non trivial worst-case upper time bounds for the considered algorithms on bounded combinatorial optimization problems. We consider here the MIN 3-SET COVERING p...
متن کاملExploiting dominance conditions for computing worst-case time upper bounds in bounded combinatorial optimization problems:application to MIN SET COVERING and MAX CUT
In the design of branch and bound methods for NP-hard combinatorial optimization problems, dominance conditions have always been applied. In this work we show how the use of dominance conditions within search tree algorithms can lead to non trivial worst-case upper time bounds for the considered algorithms on bounded combinatorial optimization problems. We consider here the MIN 3-SET COVERING p...
متن کاملBin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems
Many combinatorial optimization problems such as the bin packing and multiple knapsack problems involve assigning a set of discrete objects to multiple containers. These problems can be used to model task and resource allocation problems in multi-agent systems and distributed systems, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound stra...
متن کاملOn the Lasserre/Sum-of-Squares Hierarchy with Knapsack Covering Inequalities
The Lasserre/Sum-of-Squares hierarchy is a systematic procedure to strengthen LP relaxations by constructing a sequence of increasingly tight formulations. For a wide variety of optimization problems, this approach captures the convex relaxations used in the best available approximation algorithms. The capacitated covering IP is an integer program of the form min{cx : Ux ≥ d, 0 ≤ x ≤ b, x ∈ Z+}...
متن کاملBin-Completion Algorithms for Multicontainer Packing and Covering Problems
Bin-completion, a bin-oriented branch-and-bound approach, was recently shown to be promising for the bin packing problem. We propose several improvements to bin-completion that significantly improves search efficiency. We also show the generality of bin-completion for packing and covering problems involving multiple containers, and present bin-completion algorithms for the multiple knapsack, bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015